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ABSTRACT
The motivation of this paper is the filtering of thin elongated

objects, such as veins, fibres etc. In particular, we focus our

attention on detecting thin segments and linking them when

disconnection is due to noise. A hybrid Hessian-based and

morphological linear filtering method is proposed within the

framework of scale space theory. For each pixel the second-

derivative response kernel is collected and formed into a Hes-

sian matrix which undergoes eigen analysis. From there, the

best eigenvalue response along with the corresponding eigen-

vector is chosen on different scales. Using the resulting prin-

cipal directions of linear segment pixels, morphological filters

are used to track and connect the linears.

Index Terms— linear filter, vesselness, morphological

operations, opening, Hessian-based filtering, directional fil-

tering.

1. INTRODUCTION

There exists a great range of applications from industrial to

biomedical fields which require from image analysis a seg-

mentation of narrow, curvilinear objects. Those frequently

studied thin objects can be solid materials fissures, blood ves-

sels, natural or artificial fibres, fingerprint lines and many oth-

ers. The segmentation interest can lie in a whole object rep-

resentation (e.g. fiber surface reconstruction) or in a certain

characteristic of it (e.g. topology, size, curvature). Moreover,

extraction of linear objects and segments is an essential step

for the segmentation of whole line networks and/or parts of

larger objects (centrelines such as skeletons).

However, before confronting an object segmentation

question, even despite nowadays high resolution, precision

and overall quality digital imaging, there is a need for image

improvement. In order to improve linear object, a detec-

tion of such features is appropriate. Many narrow-object

detection/segmentation methods use strong shape constraints,

which are not appropriate for a wide range of problems with

varying shape, size of line segments as well as the topology

of their networks. From another point of view, intensity infor-

mation alone is rarely enough due to original data and/or the

nature of objects. In cases of vessels, fibers and many others,

narrow objects intensity is not homogeneous. As a result, the

objects may appear as thin disconnected filaments. The above

are the motivations for a homogenizing and linking filtering

method.

In many recent vessel-segmentation works, a multiscale

set of Gaussian filters with a shape prior was used ([1, 2]).

These works have shown that the method works well in de-

tection and tracking of curvilines when the knowledge of

searched objects is explored. In those, size and orientations

of linear structures can be identified by derivative responses

on multiple scales combined with Gaussian smoothing. As an

extension, to support a wider range of object sizes and quality

of SNR in the images, a multiscale approach as well as its

optimal single scale one have been introduced. In the recent

work of Manniesing [3], a diffusion filter is used in combi-

nation with the vesselness filtering and detection method by

Frangi [1].

On the other hand, mathematical morphology researchers

have studied linear object extraction, extending it to the di-

rection detection and tracking [4, 5, 6, 7]. Gray-scale math-

ematical morphology operations have been shown to exhibit

good results at local filtering, connection and disconnection

of objects. However, to our knowledge, the possibility of

combining Hessian-based object filtering with mathematical

morphology methods has not yet been explored .

In the current study, we propose a combined enhancement

method composed of Hessian-based and morpological filters.

A matched filter is composed with directional second-degree

derivatives of Gaussian kernels resulting in a Hessian matrix.

This is done in order to track linear objects while enhancing

them and interconnecting with morphological operations.

The paper is organised as follows: section 2 introduces

Hessian-based filter, as well as its multiscale approach and

vesselness filter. In section 3 a grey-scale morphologcal filter-

ing is described. Experimental resuls are presented in section

4. The article is concluded in section 5.
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2D Shapes

λ1 λ2

Big+ Small line(dark)

Big- Small line (bright)

Big+ Big+ blob (dark)

Small- Small- blob (bright)

Table 1. Possible eigenvalue responses and their signs after

the eigen analysis corresponding to different shapes and color

intensities.

2. HESSIAN-BASED LINE DETECTION

In order to detect linear sructures in the image, the second

derivative with a Gaussian kernel at scale σ produces a re-

sponse of local intensities showing the contrast inside and

outside the scale range in the direction of the derivative. This

reponse kernel can be represented by the 2D Hessian matrix:

H =
[

Fxx Fxy

Fxy Fyy

]
, (1)

where its elements are the second partial derivatives of an

image F(x, y), which are obtained by the convolution of the

Gaussian kernel at scale σ. The Hessian matrix is processed

through eigen analysis in order to extract the principal direc-

tions in which the second order object representation can be

decomposed. Let λ1 and λ2 ( |λ1| ≥ |λ2| ) be the eigenvalues

of H and e1, e2 their corresponding eigenvectors, respectively.

The direction along which the function F has the maximal

oriented second-derivative eigenvalue λ1 (the minimal inten-

sity variation) is eigenvector e1 (considering that the studied

object is darker than the background). The eigenvector e2 is

orthogonal to the vector e1.

To summarize, in the 1 the relations of Hessian eigen-

values are shown for different shapes and intensities for 2D

images.

2.1. Vesselness

Based on these relations, linear objects can be detected as well

as enhanced. Frangi et al. have [1] introduced a vesselness

measure function which identifies and enhances vessels and

for 2D images can be expressed as (for dark objects on a light

background):

ν(x, σ) =

{
0 if λ1 < 0,

exp(−R2
B

2β2 )(1− exp(−S2

2c2 )) otherwise.
(2)

RB = λ1
λ2

,

S = ‖Hσ‖ =
√∑

j λ2
j ,

(3)

where RB differentiates lines from blobs by considering the

eccentricity of the second-order ellipse. S is the Frobenius

matrix norm to differentiate objects of interest from the back-

ground, regarding the background having low second deriva-

tive responses. The parameters β and c are weighting factors

determining the influence of RB and S. The result of this

filter yields the probability of a pixel being a linear object.

The response is higher in the center of the object and decays

slowly toward the boundaries.

As stated in the Equation 2, the filter can be applied at

different scales, which can provide a result in a larger range

of line sizes. The vesselness function is normalized by σ2 [8]

and the maximal vesselness is selected for each pixel

V (x) = maxσmin≤σ≤σmax
ν(x, σ)

However, the filter performance depends on how well the

scale is chosen.

3. MORPHOLOGICAL FILTERING

3.1. Existing work

Basic filters in the mathematical morphology framework are

not auto-dual, one needs to distinguish dark objects over

bright backgrounds and their converse. In summary and in

broad terms, orientation of a dark object on a bright back-

ground in 2D can be estimated at any point, given a segment

structuring element (SE) of fixed length L, by computing the

angle at which the corresponding closing is the darkest.

orientation(x, y) = argminα{φα,L[I](x, y)}, (4)

where I is the image, L is the length of the segment SE, and φ
is the standard notation for a closing. A similar method holds

for dual bright objects on dark backgrounds using openings

instead. This method can also readily be extended to 3D and

can feature multiscale analysis by varying L. Furthermore, a

notion of oriented object can be defined by studying objects

which have varying closing response when α varies. Intu-

itively, non-oriented objects have constant closing whatever

the orientation, while thin objects, for instance, have one pre-

ferred orientation.

Filtering using oriented SE is classically performed, for

dark objects, using infimums of closings at arbitrary direc-

tions using segments or paths structuring elements. For bright

objects, supremums of openings are used instead.

3.2. Proposed method

Using infimums of closings for dark objects tends to preserve

thin elongated objects while removing dark compact noise.

However, curvilinear segments cannot be reconnected using

this method, as a closing is extensive by definition and a dark

object reconnection is anti-extensive. An anti-extensive open-

ing must be used instead. However, an opening using an

1012



isotropic SE is likely to destroy the thin structures in the im-

age. Hence, we must use an oriented opening.

In this work, we use the orientation information of the

Hessian to drive morphological operations on account of its

quality in linear objects direction detection, efficiency and

multi-scale approach.

A first approach could be to filter the dark linear objects

by an opening with a segment oriented in the same local di-

rection as the object itself. The resulting operation ψo would

be anti-extensive (ψo(image) ≤ image), since at each point it

is the result of an opening, as well as increasing (if image1 ≥
image2, then ψo(image1) ≥ ψo(image2)) for the same rea-

son. However it would not be idempotent. Indeed, iterat-

ing the operator ψo would yield successively different results,

with no guarantee of convergence. The operator ψo is there-

fore not an opening, which converges in one step. These

classical properties of morphological filters are important for

practitioners because they allow for easier and better-behaved

operators combinations. Instead, we propose the following al-

gebraic opening using structuring functions rather than struc-

turing elements, i.e. a structuring element B(x) which varies

with position x.

Given the dilation δB(x)[I](x) =
∨

b∈B(x) I(x + b), the

adjunct erosion ε∗ is non-local, i.e. the

∀x ∈ I,∀(y, b), y ∈ I, b ∈ B(y) and x = y + b,
ε∗[I](x) =

∧
y f(x) (5)

This non-local definition is not very helpful, since it does not

give rise to an efficient algorithm. However, we can shift the

point of view from the set of points x to the set of points y.

The definition becomes :

∀x ∈ I,∀b ∈ B(x), ε∗[f ](b) =
∧

(f(x), f(x + b)) (6)

The two definitions are equivalent, and the second yields a

useful algorithm: for all points x of I, we propagate the value

of x over all the points of the structuring element B(x) that

are of lower value. This algorithm has complexity O(N ×
L), with L the number of points in the structuring element

and N the number of points in the image. The opening is

consequently:

γo[I](x) = δB(x)(ε∗B(x))[I](x) (7)

Here B(x) is a variable structuring element. We used a

centered line segment oriented in the direction α, which is

provided by the principal direction from the Hessian compu-

tation. Length L can be variable at no extra cost, e.g. propor-

tional to the principal value, however this has not been tested

as of this writing.

This structured-function opening allows dark structures to

extend in the direction of the Hessian principal direction, in

turn permitting curvilinear segments reconnections. When

orientation is unclear, B(x) is a single point, which limits

side effects.

4. EXPERIMENTS

The experimentation platform was written with the image

analysis library ITK [9], using an implementations of vessel

detection methods by [10] and [11] for comparison.

Each image pixel is processed by the second-derivative

filter resulting in an Hessian matrix in its eigen form. From

it, we choose the eigenvalue appropriate to a linear object ac-

cording to Table 1 and the corresponding eigenvector (i.e. the

principal line direction). Following the direction of the de-

tected line segment, the local neighborhood of the original

image is opened by the proposed structuring function, using

L = 11 and α = arg(e1)∀(x, y) ∈ I . For each pixel, the

best scale response of an eigenvalue and corresponding to its

eigenvector are chosen. For the following neurite image (Fig-

ure 1), a range scale of 0.25-1 pixels in four steps was cho-

sen. Our filtering results are compared to the ones of Frangi’s

vesselness with the same scale parameters and vesselness pa-

rameters β = 0.5 and c = 5.0.

An extract of a neurite image is shown in Figure 1(a).

From fig. 1(d), we find that the proposed filter acts as a recon-

necting filter as designed, without disturbing the fine structure

of the vessels. Arrows in the original and final filtered image

indicate some areas where reconnections occurred. In con-

trast, from fig. 1(c) we note that the max eigenvalue response

does not have this effect. In fig. 1(c), the vesselness response

filter exhibits poor performances, which is typical of its action

on narrow and noisy blood vessels.

In summary, the mixed Hessian-morphological filter is

acting in a homogenizing and connecting manner on the lin-

ears, while keeping intact dark background, non-linear ob-

jects. Since it is an opening, it also removes short, compact

white areas, which is not evident in this example. This is usu-

ally desirable or of no consequence for dark features.

5. CONCLUSION

A non-linear, mixed Hessian-based and morphological method

has been proposed in order to enhance linear objects within

the scale-space theory. Preliminary tests on neurite images

show that the proposed filtering scheme is giving encouraging

results. The results are especially good for narrower linears,

and this is where most existing filters fail, either linear or

morphological.

The proposed filter has all the properties of a morpholog-

ical filter (opening or closing), which ensures it can be used

within a morphological processing pipeline with no side ef-

fect.

Our future interest lies in extensive testing, especially of

closely placed to each other objects, cross-sections, as well

as in distinguishing and enhancing other kind of shapes than

linear. In addition, it is envisaged to use a variable and more

flexible structuring element for morphological directional op-

erations, such as paths instead of segments. Our other ambi-
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(a) (b)

(c) (d)

Fig. 1. Filtering example on an image of a neurite. (a) Origi-

nal, (b) max Hessian eigenvalue, (c) vesselness response, (d)

proposed filter. Arrows indicate areas of reconnection.

tion is in the extension of the proposed method for 3D images.

Among all of these, we are interested in quantifying our filter-

ing results and comparing them with other curvilinear filters.

Finally we plan to propose an improved algorithm with

less memory consumption than the straightforward imple-

mentation. The current implementation is sufficient for work

on 2D images, however.
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